Jumat, 15 Januari 2010

langkah-langkah pengerjaan dan materi segitiga

Preview Halaman Depan



Atau bisa Langsung Dilihat di sini

File-file
  1. materi segitiga dan langkah-langkah pengerjaan.swf
  2. Ditinjau dari panjang sisi-sisi dan besar sudutnya.rar
  3. Ditinjau dari panjang sisi-sisinya.rar
  4. Ditinjau dari sudut-sudutnya.rar

Sabtu, 09 Januari 2010

JENIS-JENIS SEGITIGA

Multimedia Ditujukan Untuk Siswa SMP Kelas VII Semester 2

A. Latar Belakang
Berdasarkan pengalaman melakukan beberapa observasi di sekolah, pembelajaran Matematika yang dilakukan hanya sedikit yang menggunakan media audio visual sehingga kegiatan pembelajaran serasa masih ada yang kurang. Oleh karena itu, saya mengunakan Macromedia Flash Player untuk melengkapi kekurangan dalam kegiatan pembelajaran yang ada.
Macromedia Flash Player yang saya gunakan untuk mengenal jenis-jenis segitiga adalah untuk menarik minat belajar siswa dalam proses belajar dan pembelajaran Matematika. Pembelajaran ini ditujukan untuk kelas VII semester 2 karena berdasarkan kurikulum yang telah ditetapkan oleh Depdiknas.

B. Tujuan
Tujuan dari pembelajaran Metematika menggunakan Macromedia Flash Player adalah:
1. Agar siswa lebih tertarik belajar Matematika.
2. Agar siswa lebih memahami jenis-jenis segitiga.

C. Story Board
Link View Story Board
Link Download Story Board

Selasa, 05 Januari 2010

Matematika for mechanics

The Lagrange formulation

Importance

The Lagrange formulation of mechanics is important not just for its broad applications, but also for its role in advancing deep understanding of physics. Although Lagrange only sought to describe classical mechanics, the action principle that is used to derive the Lagrange equation is now recognized to be applicable to quantum mechanics.

Physical action and quantum-mechanical phase are related via Planck's constant, and the principle of stationary action can be understood in terms of constructive interference of wave functions.

The same principle, and the Lagrange formalism, are tied closely to Noether's theorem, which relates physical conserved quantities to continuous symmetries of a physical system.

Lagrangian mechanics and Noether's theorem together yield a natural formalism for first quantization by including commutators between certain terms of the Lagrangian equations of motion for a physical system.

Advantages over other methods

  • The formulation is not tied to any one coordinate system -- rather, any convenient variables \varphi_i(s) may be used to describe the system; these variables are called "generalized coordinates" and may be any independent variable of the system (for example, strength of the magnetic field at a particular location; angle of a pulley; position of a particle in space; or degree of excitation of a particular eigenmode in a complex system). This makes it easy to incorporate constraints into a theory by defining coordinates which only describe states of the system which satisfy the constraints.
  • If the Lagrangian is invariant under a symmetry, then the resulting equations of motion are also invariant under that symmetry. This is very helpful in showing that theories are consistent with either special relativity or general relativity.
  • Equations derived from a Lagrangian will almost automatically be unambiguous and consistent, unlike equations brought together from multiple formulations.

"Cyclic coordinates" and conservation laws

An important property of the Lagrangian is that conservation laws can easily be read off from it. E.g., if the Lagrangian \mathcal L depends on the time-derivative \dot q_i of a generalized coordinate, but not on qi itself, then the generalized momentum,

p_i:=\frac{\partial\mathcal L}{\partial\dot q_i},

is a conserved quantity. This is a special case of Noether's theorem, see below. Such coordinates are called "cyclic".

For example, the conservation of the generalized momentum,

p_2:=\frac{\partial\mathcal L}{\partial\dot q_2},

say, can be directly seen if the Lagrangian of the system is of the form

\mathcal L(q_1,q_3,q_4, \dots; \dot q_1,\dot q_2,\dot q_3,\dot q_4, \dots;t)\,.

Also, if the time, t, does not appear in \mathcal L, then the conservation of the Hamiltonian follows. This is the energy conservation unless the potential energy depends on velocity, as in electrodynamics. More details can be found in any textbook on theoretical mechanics.


Source : Wikipedia